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Abstract Reproductive effort is a key parameter of life
history because it measures the resources allocated to
reproduction at the expense of growth and maintenance.
Male reproductive effort always had a minor role with
respect to female effort both in the development of theories
and in field research. Elephant seals are an ideal subject for
reproductive effort studies because they fast during the
breeding season, splitting the phase of energy acquisition
from the phase of energy use for breeding. In this paper, we
present results on male reproductive effort (weight loss
estimated by photogrammetry) in southern elephant seals
(Mirounga leonina), the most dimorphic and polygynous of
all mammal species. We show that total reproductive effort
increases with age, with no sign of late decrease or
senescence. Male reproductive effort in this species

depends mostly on behavioral factors, i.e., the success in
competition with other males, and the intensity of interac-
tion with females. A large effort results in large gains in
both mating success and fertilizations. The large reproduc-
tive success that a few males are able to achieve come at a
big cost in terms of energy expenditure, but this cost does
not seem to affect the likelihood of survival to the
following breeding season.
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Introduction

The classic approach in the development of life history
theories is to define a criterion of optimality (e.g., lifetime
reproductive success) and then identify the pattern of
reproduction that produces an optimal life history given a
set of constraints (Gadgil and Bossert 1970). Although
there are now alternatives, this optimization approach still
has a very important role in the study of life histories
(Stearns 2000). Reproductive effort, i.e., an organism’s
investment in any current act of reproduction as opposed to
growth and maintenance or survival (Fisher 1930), is
central in the optimization of life histories (Pianka 1988;
Charlesworth 1994). Assuming that reproduction involves a
cost, there should be, for any age class, a level of
reproductive effort that optimizes the trade-offs between
current and future reproduction (Gadgil and Bossert 1970;
Pianka and Parker 1975). Unfortunately, reproductive effort
and cost of reproduction are somehow blurred concepts,
with different authors using different, sometimes incompat-
ible, definitions (Tuomi et al. 1983). Moreover, the actual
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measurement of reproductive effort is difficult, especially
for field studies (Reznick 1985).

A main problem of the study of breeding effort is that, in
most species, energy use is not separated from energy
acquisition, and individuals carry on feeding during the
breeding period. The estimation of reproductive effort is
much easier in capital breeders, i.e., in species in which
feeding is reduced or null during the breeding. In these
species, reproductive effort can be estimated directly from
weight lost during the breeding season (Yoccoz et al. 2002;
McElligott et al. 2003; Mysterud et al. 2004; Mysterud
et al. 2005). Although weight loss is particularly effective
in capital breeders, it is also the best index of male
reproductive effort in mammals at large (e.g., Isaac 2005)
because it is more directly linked to true effort than the
more common behavioral indices (e.g., Huber et al. 2002).
Many seal species are excellent examples of capital
breeders because they fast completely during the breeding
season, and there is a clear separation between an aquatic
phase of energy acquisition and a terrestrial breeding phase
of energy consumption. Therefore, seals are an ideal subject
for the study of reproductive effort and are becoming modal
species for the study of the energetics of reproduction at
large (Fedak and Anderson 1987; Boyd 2002). Most studies
of seal reproductive effort concentrated on females (e.g.,
Schulz and Bowen 2004), and much less information is
available for males (Cystophora cristata: Kovacs et al.
1996; Halichoerus grypus: Anderson and Fedak 1985;
Tinker et al. 1995; Mirounga angustirostris: Deutsch et al.
1990; Phoca vitulina: Walker and Bowen 1993). This bias
is due in part to the complexity of measuring breeding effort
in males compared to females (Deutsch 1990). Moreover,
females occupy a central role in demography and life history
modelling because the rate of population growth is limited
by female, and not by male, fecundity (Stearns 1992;
Wilkinson and Van Aarde 1999). Only recently the males
role begins to be recognized (Mysterud et al. 2002). In many
mammal species, the evolution of female reproductive effort
was probably driven by ecological factors, while male
reproductive effort was probably driven by sexual selection
(Trivers 1972), although ecological constraints surely played
a limiting role. Therefore, it is not easy to compare the
reproductive effort between the sexes, and this is, in turn, a
crucial step to understand the large differences that the sexes
show in almost all phenotypic traits, including morphology,
behavior, and life history.

The elephant seal (genus Mirounga) mating system is
probably the most extreme example of polygyny observed
in mammals and vertebrates at large (Clutton-Brock 1989).
Females haul out and gather in large groups to give birth,
males establish dominance relationships that regulate access
to females, and the resulting distribution of reproductive
success is exceptionally skewed (Galimberti et al. 2002).

Variance in lifetime reproductive success is much higher in
males than in females (Le Boeuf and Reiter 1988), and
most life history traits are different between the two sexes
(Clinton 1994). Male elephant seals show no parental care,
and, therefore, all their reproductive effort is mating effort.
They are possibly the best example of capital breeders
because they fast during the whole breeding season, which
can last for more than a hundred days (Le Boeuf and Laws
1994). Their weight loss, therefore, is an excellent measure
of reproductive effort (Deutsch et al. 1990).

The main problem in estimation of reproductive effort in
male elephant seals is their large size (Le Boeuf and Laws
1994). We used a photogrammetric method to measure
weight loss in a large sample of southern elephant seal
(Mirounga leonina) males during two consecutive breeding
seasons at Sea Lion Island (Falkland Islands). In this paper,
we describe male body length, weight, and weight loss; we
estimate population-average and individual weight loss
rates; we examine the age-specific variation of weight loss;
we analyze the relationship between weight loss and
structural size (i.e., size as determined by the skeleton),
breeding status, tenure, and behavior. Moreover, we test the
hypothesis that there should be a positive correlation
between reproductive effort and competition success, and
we examine the effect of current reproductive effort on
seasonal reproductive success and survival to the following
breeding season.

Materials and methods

Data were collected during two breeding seasons (September–
November, 2002 and 2003) at Sea Lion Island (Falkland
Islands; SLI hereafter), where there is a small and almost
isolated population of southern elephant seals, comprising
about 550 females and about 60 breeding males (Galimberti et
al. 2001). We defined “breeding males” as all that were
observed in areas where one or more females were present
(Galimberti and Boitani 1999). All breeding males were
marked with hair dye upon arrival, and all had cattle tags
placed during previous breeding seasons. Details of the
marking protocol may be found in Galimberti and Boitani
(1999).

Estimation of length, weight, and weight loss

We calculated body length and estimated weight using a
photogrammetric method (Haley et al. 1991; Bell et al.
1997). High-resolution digital pictures of males were taken
opportunistically along the whole span of each breeding
season (12 weeks). An assistant kept a calibrated surveying
pole (4 m long) above the male back. The body length
(beginning of trunk to beginning of tail) and the side area
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were measured from the pictures using the Object Image
software (http://simon.bio.uva.nl/object-image.html). The
side area is the single best photogrammetric estimator of
weight in southern elephant seals (Bell et al. 1997). Side
areas were converted to weight using the formula presented
in Table 1 of Haley et al. 1991 for northern elephant seals:
Weight=507.738×Area1.544. Southern and northern ele-
phant seal males have the same shape and morphology,
the only notable difference being the proboscis (more
developed in the northern species, Le Boeuf and Laws
1994), which is not involved in the photogrammetric
estimation.

We obtained a total of 336 weight estimates (141 in 2002
and 195 in 2003) for 110 individuals (54 in 2002, with a
mean of 2.6 estimates per individual, range 1–7; 56 in
2003, with a mean of 3.5 estimates per individual, range 1–
10). The sampled males represent the vast majority of the
breeding males (n=59 in 2002, with 91.5% coverage, and
62 in 2003, 90.3%). Repeated pictures were taken at
intervals ranging from 4 to 71 days (mean=39.0±19.2).
Twenty-six males were present in both seasons, and the
total number of individual males in one or both seasons was
84. The measures of the same male in different seasons are
correlated, and this increases the risk of pseudo-replication
(Machlis et al. 1985), although the duplicated measures
were only 24% of the dataset. To assess the effect of this
longitudinal data structure, we ran, for each hypothesis, a
mixed regression using the male identities as random effect,
and then we calculated the significance of this effect with
the Breusch–Pagan Lagrange multiplier test (Breusch and
Pagan 1980). The random effect was nonsignificant in all
cases, and the probabilities of the test statistics were large
(always >0.20). Therefore, we used ordinary least squares
regressions, ignoring the random effect.

To check the validity of the photogrammetric method,
we estimated the repeatability of measurements of length
and side area (Lessells and Boag 1987; Bailey and Byrnes
1990). We calculated confidence limits of repeatability
using bootstrap (1,000 samples), and we tested the
significance of its difference from zero by randomization
(10,000 resamplings; Manly 1997). Only males with three
or more independent pictures (i.e., pictures taken during the
same day but at different times, after the male moved to a
different location) were included in the repeatability
analysis. Repeatability of length measures was excellent
(2002: 364 measures, R=0.981, 95% confidence interval=
0.971−0.991, p=0.0001; 2003: 346 measures, R=0.982,
95% ci=0.974–0.991, p=0.0001). Repeatability of side
area was also high (2002: 295 measures, R=0.946, 95%
ci=0.926–0.966, p=0.0001; 2003: 170 measures, R=0.959,
95% ci=0.942–0.976, p=0.0001).

From photogrammetric measures we calculated various
total and relative measures of reproductive effort. The latter

measures are better to compare males reproductive effort
among males of different size, but the former are useful to
evaluate the consequences of this effort. For males with
three or more measures we calculated: (1) the initial weight
at arrival and the final weight at the end of the breeding
season (kilogram), calculated from the individual rate of
weight loss (see “Results” for estimation details) and the
observed dates of arrival and departure; (2) the total weight
loss (=initial weight − final weight, kilogram); (3) the
percentage weight loss (weight loss/initial weight×100); (4)
the daily loss rate (weight loss/number of days on land,
kilogram); (5) the daily loss rate per unit weight (weight
loss per kilogram of body weight per day, gram). Ratios,
proportions, and percentages are useful for description, but
they have undesirable statistical properties (Atchley 1978).
Our results should be robust because distributions showed
no 0 or 100% values, skewness was not pronounced, and
we analyzed these variables using randomization tests
(Manly 1997).

Body size affects the absolute energetic requirement of
maintenance metabolism and, therefore, weight loss should
depend on size (Schmidt-Nielson 1984), although this has
been shown to not always be true in male pinnipeds
(Kovacs et al. 1996). To obtain a measure of weight loss
independent from size, we calculated the residuals of the
linear regression of total weight loss vs length (size-
independent loss; see “Results” for regression details). We
used length as measure of size because it does not change
during the breeding season, and, therefore, is more
representative of the true structural size of each male.

Age determination

Age was known for males up to age 7 (in 2002) and 8 (in
2003) because they were marked as pups (see Galimberti
and Boitani 1999 for details). The other males of the sample
were tagged as juveniles, and, therefore, their age was
estimated using external morphology (development of the
proboscis, rugosity of the neck shield), which permits
classification of elephant seals in yearly age classes with
good accuracy (Deutsch et al. 1990; Galimberti et al.
2000a). Male ages ranged from 6 to 12, but just four males
(5.1%) were older than 10 years. We classified males of age
9 and above as mature and the others as young. The
rationale of this classification is that most harem holder
were 9 years old or older. Our young males are equivalent
to the “subadult” males in the northern elephant seals
literature (e.g., Deutsch et al. 1990).

Estimation of behavioral factors

We estimated the duration of presence on land of each male
from the individual serial records collected during daily
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censuses. We collected behavioral data during 514 2-
h observation periods in 2002 and 838 in 2003. We used
all occurrences sampling and continuous recording (Altmann
1974). Full details of the observation protocol are available
elsewhere (Galimberti et al. 2000a). From these data we
calculated: (1) an index of general activity, given by the
proportion of observation periods in which a male had social
interactions with males or females; (2) an index of
interaction with males, given by the mean number per
observation period of male vs male interactions in which the
male was involved as actor or reactor; (3) an index of
aggression, given by the mean number of male vs male
interactions that the male started per observation period; (4)
an index of interaction with females, given by the mean
number of male interactions with females per observation
period.

We assembled yearly dominance matrices of wins and
losses using the results of male vs male interactions
recorded during observation periods. From these matrices,
we calculated an index of success in competition with other
males based on the David’s score (Gammell et al. 2003).
We corrected the proportions of wins and losses for random
effects with the method of De Vries (1998). Almost the
same number of breeding males was included in the
estimation of the competition index in the 2 years, and,
therefore, its absolute values were comparable between the
years without any transformation.

Estimation of breeding performance

At Sea Lion Island, there was a harem-based female
defense mating system, with a single male able to
monopolize access to females of each harem (Fabiani
et al. 2004). We define as harem holder the male within
the female group as observed during the daily census. We
define as main breeding males the males who were holders
of the same harem for at least 2 consecutive days when
there were females in oestrus. We define all other males as
peripheral males. The number of females held by each
male was not stable through the breeding season because of
the pattern of arrival and departure of females (Galimberti
and Boitani 1999). Therefore, we calculated a females days
index (Clutton-Brock et al. 1982) by summing the number
of females held by a male in each day of the breeding
season for all days of its presence on land. We estimated the
mating success of each male by calculating the number of
copulations observed and standardizing it for 100 h of
observation (Campagna and Le Boeuf 1988). We estimated
the male reproductive success using the estimated number
of females inseminated (ENFI, Le Boeuf 1974), calculated
by summing, for each male and for each harem in which it
was observed to copulate, the product of the proportion of
copulations achieved and the number of females that bred

in the harem. At SLI, ENFI showed a very high correlation
with true genetic success, as estimated by microsatellite
paternity analysis (Fabiani et al. 2004).

Statistical analysis

Body size variables had a symmetric normal distribution
(Shapiro–Wilk tests—length:W=0.989, n=110, z=0.047, p=
0.48; initial weight: W=0.973, n=78, z=1.313, p=0.09;
final weight: W=0.985, n=78, z=0.056, p=0.48). Some
variables were very skewed and not normally distributed
(total weight loss: W=0.920, n=78, z=3.69, p=0.0001;
percentage weight loss: W=0.954, n=78, z=2.49, p=
0.0064; mating success: W=0.684, n=78, z=7.45, p<
0.0001; ENFI: W=0.664, n=78, z=7.58, p<0.0001).
Mating success and ENFI distributions showed a very long
positive tail. Not being able to specify expected error
distributions for these variables, we tested models involving
them using randomization tests, which make no assumption
about the distribution of the variables and of their errors
(Manly 1997). The number of random permutations used in
each test was 10,000 except where noted. Most analyses
were carried out using ordinary least squares regression. We
compared regression coefficients between two groups (e.g.,
adult vs subadults) using the Chow (1960) test. We included
in regression results the standardized coefficients (betas) to
permit an approximate comparison of the magnitude of
effects of the different regressors. Multiple regression
validation included the calculation of multi-collinearity
diagnostics. To check the homogeneity of regression
residuals, we visually inspected residual vs fitted scatterplots,
and we applied the White (1980) test of heteroscedasticity.
To verify the presence of nonlinear effects, we inspected
scatterplots with fitted LOWESS (Trexler and Travis 1993),
and we ran a robust version of the Ramsey RESET tests for
omitted variables (Ramsey 1969). Statistics are presented as
mean±standard deviation. Data analysis was carried out in
STATA version 7 (Stata Corporation).

Results

Body size

The mean photogrammetric length (about 91% of the
standard body length, Haley et al. 1991) was 364±
23.5 cm (n=110; Fig. 1). Length was not different between
the 2 years of study (t test: mean diff.=4.0 cm, se=4.5, t=
0.90, df=108, p=0.37). The mean weight at first measure-
ment was 1,809±458 kg. The mean weight at arrival date
was 2,092±445 kg (n=78), ranging from 1,316 to 3,182
(Fig. 1). The mean weight at the end of the breeding season
was 1,541±323 kg. In 2003, males were significantly
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heavier at arrival (t test: mean diff.=219 kg, se=98, t=2.23,
df=76, p=0.0289) and at the end of the breeding season
(mean diff.=208 kg, se=70, t=2.99, df=76, p=0.038).
Body weight at arrival increased with body length at a rate
of 16.8 kg/cm (Linear regression: se=1.014, t=16.6, df=77,
p<0.0001). Length explained 78.3% of the variability of
weight at arrival. The slope of this relationship was
homogeneous in the 2 years of study (Chow test: F1,74=
0.03, p=0.87), but the residuals of the common regression
were lower in 2002 (mean=−128 kg) than in 2003 (116 kg;
t test: mean diff.=244 kg, t=6.41, df=76, p<0.0001),
suggesting that most males were in better condition at
arrival in 2003.

Weight loss

Total weight loss of individual males ranged from 231 to
1,319 kg (n=37, mean=545±243) in 2002 and 189 to
1,300 kg (n=41, mean=556±269) in 2003 and was
homogeneous between the 2 years of study (mean diff.=
10.6, se=58.3, t=0.18, p=0.8628). The percentage loss
ranged from 12.6 to 51.8% (mean=27.1±8.98) in 2002 and
12.3 to 45.2 in 2003 (mean=24.6±8.69) in 2003. It was
homogeneous between the years (t test, with randomization:
mean diff.=2.48%, se=2.0, t=1.24, p=0.2320). The mean
daily rate of weight loss was 9.1±2.9 kg/day in 2002 (4.6–
16.3) and 9.0±4.1 in 2003 (3–22.5). The mean daily
weight-specific loss was 4.7±1.5 g/kg (2.7–9.7) in 2002
and 4.1±1.5 g/kg (1.9–9.1). Pooling the data between the
2 years, males lost a mean of 551 kg, which is 25.8% of
their body weight (Fig. 1). Weight loss trajectories of the
2003 males with three or more measures are shown in

Fig. 2. The male that had the greatest percentage loss
(51.8%) was an adult male who held a big harem, looked
exceptionally thin at the end of the breeding season, and did
not survive to the following year. Total weight loss of
individual males was related to both their length (Linear
regression, with randomization: b=6.2 kg lost per cm, se=
1.02, t=6.08, p=0.0001), which explained 33% of its
variance, and their initial weight ((Fig. 3, b=0.401 kg lost
per kg, se=0.047, t=8.52, p=0.0001), which explained
49%. The correlation between body length and weight was
not so strong to produce a problem of multicollinearity
(tolerance=0.22). Therefore, we ran a multiple regression
with both variables, and weight was shown to be the most
important of the two in determining weight loss (beta=
0.888, p<0.0001 vs 0.214, p=0.2321).

To calculate the best population-wide estimate of weight
loss rate we ran a mixed model regression on the repeated
measures of weights (all weights for all males with three or
more weights) with the days from arrival on land as the
independent variable and the individual identities as random
effect. Weight decrease was linear (Ramsey RESET test:
F3,246=0.95, p=0.42). In 2002 (n=88 measures of 21
males), weight loss rate was 8.7 kg/day (se=0.46, 95% ci=
7.8–9.6). In 2003 (n=163 measures of 33 males), it was
8.8 kg/day (se=0.39, 95% ci=8.1–9.6). The average within
male R2 was 0.85 in 2002 and 0.80 in 2003, showing that the
linear model gave an excellent fit of the individual weight
loss. The Breusch and Pagan test for the random effect was
significant in both cases (2002: χ2

1 ¼ 105:2, p<0.0001; 2003:
χ2
1 ¼ 308:6, p<0.0001), showing that different males have
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significantly different rates of weight loss. The difference in
weight loss rate was not significant between the two seasons
(Wald test on the difference between regression coefficients:
χ2
1 ¼ 1:49, p=0.22). The weight loss rate estimated for the

pooled data was 8.8 kg/day (95% ci=8.1–9.3).

Age-specific variation of weight loss

Mature males had a higher total (i.e., non size-independent)
weight loss than young ones (748±61.7 kg, n=23 vs 468±
24.8, n=55; t test, with randomization: mean diff.=280 kg,
se=55.1, t=5.07, p=0.0001) and a higher percentage loss
(28.9±2.1 vs 24.5±1.1; mean diff.=4.4%, se=2.2, t=2.06,
p=0.0326). Total loss increased with age (Fig. 4) at a rate
of 113 kg/year (Linear regression, with randomization test:
se=19.9, t=5.69, p=0.0001, R2=0.31) and percentage loss
at 1.70% (se=0.81, t=2.10, p=0.0393). Size-independent
loss (i.e., the loss after removing the effect of length) was
not related to age (b=20.5, se=19.4, t=1.06, p=0.2913).
Males measured three or more times in both 2002 and 2003
had a higher weight loss in 2003 (Paired t test, with
randomization: mean diff.=160 kg, t=2.27, p=0.0369).

Weight loss and male status

Main breeding males (n=30) were both longer (387±
18.7 cm vs 357±18.0; t test: mean diff.=30.3, se=4.25, t=
7.12, df=76, p<0.0001) and heavier upon arrival (2,403±
392 kg vs 1,898±359; mean diff.=505 kg, se=86.6, t=
5.84, df=76, p<0.0001) than peripheral males (n=48).
Total weight loss was higher for main breeding males (704±

50.6 kg) than for peripherals (455±27.1; mean diff.=249 kg,
se=52.6, t=4.03, p=0.0001), while percentage loss was
similar (28.8±1.6 vs 23.9±1.2, mean diff.=4.9, se=2.0, t=
2.48, p=0.1111). The total weight loss increased with the
increase in the total number of females held (Linear
regression, with randomization: b=0.191, se=0.050, t=3.80,
p=0.0007), but the variance in loss explained by the females
days index was rather small (adjusted R2=0.16). Both
percentage loss (b=0.005, se=0.002, t=2.66, p=0.0084)
and size-independent loss increased slightly with the females
days index (b=0.079, se=0.044, t=1.80, p=0.0516).

Behavioral factors affecting weight loss

Males were present on land for a mean of 61.6±15.0 days.
Weight loss increased with the duration of presence on land
(Linear regression, with randomization test: b=9.4, se=
1.59, t=5.88, p=0.0003). Weight loss was not related to
general activity (b=−244 kg, se=173.4, t=−1.14, p=
0.1863). Weight loss increased with the rate of interaction
with other males (b=63.0, se=21.9, t=2.88, p=0.0060,
beta=0.314), but the proportion of variance associated with
the regression model was small (R2=0.10). Aggression rate
had a stronger effect (b=96.3 kg, se=16.5, t=5.82, p=
0.0001, beta=0.556) and explained a bigger proportion of
variance in weight loss (R2=0.31). Aggression rate had a
slight effect on percentage loss (b=1.63%, se=0.66, t=2.45,
p=0.0149, beta=0.271) but not on size-independent loss.
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Weight loss increased with the individual rate of interaction
with females (b=124 kg, se=17.9, t=6.92, p=0.0001, beta=
0.621), and the proportion of explained loss variance was
rather large (R2=0.39). The rate of interaction with females
also affected the percentage loss (b=2.9%, se=0.72, t=4.08,
p=0.0002, R2=0.18) and the size-independent loss (b=
63.1 kg, se=17.4, t=3.63, p=0.0004, R2=0.15).

Weight loss increased with the increase in the competi-
tion success index (Fig. 5; b=1.23, se=0.15, t=7.97, p=
0.0001, beta=0.685), and this factor explained a rather
large proportion of the variance in loss (adjusted R2=0.47).
The slope of the model was steeper for mature males (b=
1.67) than for young males (b=0.946), but the difference
was not significant (Chow test: F2,70=0.8728 p=0.42).
Success in competition increased also the percentage loss
(b=0.026, se=0.007, t=3.94, p=0.0002, R2=0.18) and the

size-independent loss (b=0.476, se=0.165, t=2.89, p=
0.0048, R2=0.10).

To test the combined effects of the structural and
behavioral factors that affect weight loss, we ran a
multivariate regression of weight loss vs length, age,
aggression rate, competition success, and rate of interaction
with females. We included length instead of weight because
it is a better measure of structural size. These variables were
themselves correlated (all r>0.50) but not so much to
produce a serious multicollinearity problem (all tolerances>
0.23). The model explained 57% of the variance in loss,
and the most important factors were behavioral, the
competition success, and the rate of interaction with
females, while the structural factors had nonsignificant
regression coefficients (Table 1).

Effect of weight loss on individual fitness components

The weight loss of unsuccessful individuals (ENFI≤10, n=
58) was significantly lower than the weight loss of
successful ones (n=20; t test, with randomization: mean
diff.=−262 kg, se=66.3, t=−3.95, p=0.0001). Mating
success increased with weight loss (b=0.018, se=0.004, t=
4.35, p=0.0001, beta=0.446, R2=0.20) but not with
percentage loss (b=0.21, se=0.13, t=1.61, p=0.1064).
ENFI increased with total weight loss (b=0.055, se=
0.008, t=6.72, p=0.0001, beta=0.610, R2=0.37) and
percentage loss (b=0.914, se=0.281, t=3.26, p=0.0019,
beta=0.350, R2=0.12). A model including length, age,
weight loss, and competition success explained 62% of the
variance in ENFI, but the standardized regression coef-
ficients of weight loss (beta=0.163) and length (0.145)
were not significant and smaller than the significant
coefficients of age (0.280) and competition success (0.301).

There was no difference in weight loss between males
that survived to the next breeding season (n=22, mean=
572±50.4) and males that did not (n=15, mean=590±93.6;
t test, with randomization: mean diff.=17.6, se=98.3, t=
0.18, p=0.4135).
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Fig. 5 Scatterplot of photogrammetric weight loss versus success in
competition, as measured by the David’s score, with regression lines
for young and mature males. Filled circles and plain line, mature
males; empty circles and dashed line, young males

Table 1 Multiple regression of weigh loss versus body length, age, aggression rate, competition success, and rate of interaction with females

Variables b se(b) beta t p 95% CI (b)

Length 1.69 1.60 0.154 1.05 0.2778 −1.51 4.89
Age 0.17 29.87 0.001 0.01 0.8954 −59.50 59.84
Aggression rate −38.35 26.25 −0.225 −1.46 0.1521 −90.78 14.09
Competition success 0.93 0.28 0.518 3.28 0.0016 0.37 1.50
Rate of interaction with females 74.65 24.70 0.375 3.02 0.0031 25.30 124.00

b Partial regression coefficient; se(b) standard error of the partial regression coefficient; beta standardized partial regression coefficient; t t test
statistics; p result of the randomization test on the null hypothesis H0: b=0, with 10,000 resamplings, 95% ci(b)=95% confidence interval of the
partial regression coefficient calculated using the bootstrap (1.000 samples)
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Discussion

Assumptions and limitations of our study

Our study was observational, with no control of the study
setting and of the subjects included. Moreover, the
evidences we produced are purely correlational, and corre-
lation does not mean causation. The modelling of optimal
life history evolution assumes the presence of a genetic basis
for the life history traits involved. Phenotypic correlations
are not always a good index of genetic correlations because
they measure both environmental and genetic effects on a
trait. Therefore, the ideal methods to deal with reproductive
effort are quantitative genetic designs and selection experi-
ments (Reznick 1985). On the other hand, phenotypic
correlations are often a good index of genotypic correla-
tions (Cheverud 1988). Moreover, experimental genetic
approaches to the study of reproductive effort often require
such a simplification of the study settings compared to the
natural settings that they measure only a part of the true
reproductive effort (Bell 1980; Reznick 1985). Many
species, and many interesting biological questions, are not
amenable of experimentation, and even when experiments
in natural setting are practically feasible, they may present a
high ethical cost (Cuthill 1991).

The photogrammetric method of weight loss estimate
proved effective because it produced a large sample of
repeatable measures. The method is particularly suitable for
male elephant seals (see also Bell et al. 1997). Direct
weighing may provide better estimates of each weight but
also has drawbacks. Strongly invasive methods, which
requires physical or chemical restraint, present risks
(Deutsch et al. 1990), have an ethical cost (Wilson 2002),
are difficult to apply serially to the same individual, and
may disrupt behavior. All these problems are amplified by
the large size of elephant seal males (e.g., Bryden 1969).
The use of a weighing platform (Deutsch et al. 1990),
although ingenious and effective, is difficult to implement
in the field, requires a large effort to obtain each weight,
presents the risk to disrupt behavioral activity (due to the
methods used to lure the male on the platform), and has a
moderate success rate (42% successful attempts, Deutsch
1990 p. 26). The photogrammetric method is fast (each
picture/weight requires a modest effort), produces a large
sample of serial measurements, is cheap to implement, and
has a high success rate (the percentage of pictures suitable
for measurement was 81.8%, n=1,974 pictures). Therefore,
the photogrammetric estimation of weight is a valuable
alternative to direct weighing, but also to the behavioral
estimation of reproductive effort, the reliability of which is
questionable (Mysterud et al. 2004).

In our study, a small number of older males were
measured. This was not due to a sampling bias because we

measured most breeding males in our study population and
all males of the older classes. In the only other study
available on breeding male age distribution, the percentage
of males older than 10 years was 22.5% (South Georgia;
McCann 1980), higher than the 5.1% of SLI. Therefore, our
results would be conservative because we expect that more
males of the oldest age classes would increase the
difference between young and mature males.

Components of reproductive effort in male elephant seals

Reproductive effort has three components, energy, time, and
risk (Warner 1980). In this paper we considered just one
component of male effort, the energetic one, as measured by
photogrammetric weight loss. Although this is the method
of choice to estimate reproductive effort in capital breeders
(Mysterud et al. 2004), the importance of other components
should be assessed. There is a large variation in the
importance of the time component between species
(Owen-Smith 1984). The time component can be important
in species with a complex mating pattern, where a male
may require a significant amount of time to find an oestrus
female, where courtship can be complex and time consum-
ing and copulation itself can be a long process, and where
postcopulatory mate guarding may be crucial for reproduc-
tive success. Moreover, in species with stable, long-term,
social bonds between males and females, the male may
need to allocate a considerable amount of time outside the
strict mating period to interact with females, to maintain the
cohesion of the breeding unit and be able to mate (e.g., this
“loyalty” problem is the core of male reproductive effort in
another harem breeding mammal, the gelada baboons,
Dunbar 1984). In all these species, males are clearly time
limited, and time allocation is an important component of
their reproductive strategies and effort. Nothing of this
applies to elephant seals: males keep no social bond with
females; reproduction is gregarious and there is no search-
ing phase for oestrus females; males are not selective in
their choice of females to mate with and copulation takes a
negligible amount of time (Galimberti et al. 2000a); mate
guarding is a minor and occasional component of mating
behavior (Galimberti et al. 2000b). Altogether, elephant seal
males seem not to be limited by mating time, at least at the
high level of polygyny of our study population. The same
seems to happen in South Georgia, where harems are bigger
(McCann 1983). In our study population, the average time
budget comprises about 85% of time dedicated to resting
and just about 5% to social activities. It is rather unlikely
that the differential allocation among males of this small
amount of social time will produce any significant
difference in total reproductive effort. This is in accordance
with the lack of a relationship between our index of general
activity and weight loss.
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The risk component of reproductive effort is difficult to
assess. Physical damage due to male competition is
frequent in some species (Wilkinson and Shank 1977;
Silverman and Dunbar 1980; Geist 1986; Drews 1996;
Pack et al. 1998), but its effect on reproduction and survival
is unclear. In elephant seals, although fights are an
important component of agonistic behavior (Haley 1994),
most social interaction are settled without physical contact
(Sandegren 1976; McCann 1981) and vocalizations convey
reliable information about the contestants phenotype (Sanvito
et al. 2007a), permitting the resolution of conflicts through
assessment. At SLI, only 3% of the interactions are actual
fights, and most interactions are settled by vocalizations
(Sanvito et al. 2007b). Notwithstanding this, males were
frequently wounded, although wounds were never so severe
as to stop a male’s breeding activities, and we observed just
one case of lethal fight in 12 breeding seasons. In northern
elephant seals, wounds appear to be a minor cost of re-
production (Deutsch et al. 1994), and lethal fights are
exceptionally rare (Deutsch 1990). Other risk components
are possible, including predation and disease transmission,
but, altogether, the risk component seems to be of minor
importance in male elephant seal reproductive effort.

Patterns of weight loss

SLI males were heavier at arrival (mean=2,092 vs 1,704 kg,
max=2,265 vs 3,182) and lost more weight (vs 198–1,049 kg)
than northern elephant seals of Año Nuevo (Deutsch et al.
1990). They had a lower mean percentage loss (25.8 vs
35.6), but a higher maximum (51.3 vs 46.3%) and a higher
variability (CV=0.343 vs 0.160). This difference could have
been an artefact of the different protocol, but it seems too
large to be explained just by this due to the low variability of
individual estimates at both sites. The growth trajectory of
SLI males (personal observation) is quite different from the
northern elephant seals one (Clinton 1994). In the northern
species, the growth rate shows a fast reduction between age
6 (relative growth about 9%) and 8 (2%), and then reaches a
plateau. At SLI, the growth rate is similar at age 6 (8%), but
the decrease is less steep (>5% at age 8), and the growth rate
remains above 2% up to age 12. Therefore, although the age
range of males present during breeding was similar between
our study and the northern elephant seal study, the body size
range was smaller in the northern elephant seal sample (see
also Clinton 1990), and the observed higher variability in
reproductive effort at SLI can be a result of this larger spread
in body size.

The causes of the huge sexual size dimorphism in
elephant seals are not clear. A large size confers a fecundity
advantage to females (Le Boeuf and Reiter 1988) and is an
important component of male competition for mates (Haley
et al. 1994). At SLI, length explained about 56% of

variance in the competition index, and initial weight
explained 57% of it. Moreover, a large size may improve
fasting endurance (Andersson 1994; Murphy 1998) because
the exponent of the allometric scaling of metabolic rate
with body size is lower than 1 in seals (Lavigne et al. 1986;
Boyd 2002) and mammals at large (Reiss 1989), although
this point is somehow controversial because most evidence
comes from inter-specific studies (Millar and Hickling
1990). The effect of body size on both competition and
endurance may well explain why male elephant seals are so
big, and so much bigger than females. On the other hand,
bigger individuals require bigger amount of food to survive,
and this may put an upper limit to size evolution
(Blanckenhorn 2000). In southern elephant seals, males
demand a much greater proportion of resources than
females, both individually and at the population level
(Boyd et al. 1994). At SLI male size showed a reduction
of about 32 cm in photogrammetric length from 1995 to
2003 (personal observation). The reduction in mean size of
breeding males observed at SLI, and the almost complete
disappearance of the very large males present in the first
years of our long-term study could have been the product of
a shortage of food resources that made it impossible for the
largest males to recover from the weight loss suffered
during breeding. Therefore, the ecological constraints set
forth during the aquatic feeding phase may be the limiting
factor in the increase in reproductive effort.

Data on the reproductive effort of male mammals is scanty
and almost limited to seals only (Table 2). The absolute and
percentage weight loss of southern elephant seals at SLI was
bigger than in any other species except the northern elephant
seal. In northern elephant seals the lifetime pattern of
reproductive effort, and life history at large, present striking
differences between the sexes (Reiter and Le Boeuf 1991;
Clinton and Le Boeuf 1993). Notwithstanding this, the mean
reproductive effort of each breeding season is quite similar
between the sexes, although it is more variable in males
(Deutsch et al. 1994). Southern elephant seal females of the
South Georgia population (Arnbom et al. 1997) had a higher
mean percentage effort than males at SLI (34.6 vs 25.8%)
but a lower maximum effort (42.0 vs 51.8%) and a lower
variability (CV=0.104 vs 0.343). Daily rate of weight loss
was only slightly lower (7.9 vs 9.1 kg/day), but again the
variability was much lower (CV=0.177 vs 0.392). Our study
confirms the higher variability of male reproductive effort, as
expected for a polygynous species in which females have
few opportunities to increase their seasonal reproductive
success, being limited to a single pup per breeding season.

Reproductive effort and age

Reproductive effort is expected to increase with age when
the adult mortality is low, when individuals continue to
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grow after puberty, and when the allocation of resources
required for breeding is so large that it can significantly
affect maintenance and growth (Charlesworth and Leon
1976; Charlesworth 1994). The reverse conditions favor an
early start of breeding and a constant or reduced effort with
age. Elephant seal males seem to meet the condition of an
increase in reproductive effort with age. Mortality rates of
mature males are low (Clinton and Le Boeuf 1993), growth
continues after physiological maturity (McLaren 1993), and
a massive resource allocation is required to breed at all.
Contrary to expectation, in the northern species, Deutsch et
al. (1990) found no differences in reproductive effort
between subadult and adult males. At SLI, total reproduc-
tive effort and percentage effort increased with age,
although the increase in size-independent effort was not
significant. There is contrasting evidences about the age-
specific allocation of reproductive effort in male mammals
(Clutton-Brock 1984; Mysterud et al. 2003). Yoccoz et al.
(2002) studied reproductive effort in the red deer (Cervus
elaphus), a species with a harem-based mating system quite
similar to elephant seals (Clutton-Brock et al. 1982),
although with a lower male reproductive effort (Bobek et
al. 1990). They compared two models: the “terminal
investment” model, which forecast an increased terminal
reproductive effort due to the reduction in reproductive value
(Clutton-Brock 1984), and the “mating strategy-effort”

model, which forecast a peak in breeding effort for prime-
aged males, which usually are harem holders, followed by a
decline in the older age classes. Red deer age-specific
allocation of reproductive effort seems to fit the second
model better. Southern elephant seals, on the other end, show
a regular increase in reproductive effort, with no late decline
and no signs at all of male reproductive senescence. At SLI,
all males that were able to breed showed a clear increase in
breeding success up to their last breeding season, and then
died, without any sign of breeding senescence.

The much bigger total reproductive effort shown by
adult males at SLI should have important consequences on
feeding strategies due to the need to recover a much greater
energy loss in the same time span of the subadult males.
Therefore, we may expect to observe differences in the
migration and feeding patterns among males displaying
different total reproductive effort. Unfortunately, although
there is a rich database of information about feeding
strategies of elephant seal females obtained by telemetry
during the aquatic phases of the lifecycle, this sort of
information is rare for males. There is evidence for a
feeding segregation between the sexes, and for a large
variation of feeding strategies between individual males,
but no evidence of a relationship between male reproduc-
tive effort and feeding strategies (southern elephant seals:
Campagna et al. 1999; northern elephant seals: Stewart

Table 2 Summary of the information available on pinniped male reproductive effort

Species Data set Body weight Presence
on land

Weight loss Percentage
loss

Weight loss rate Reference

Mirounga
leonina

Pooled 2,092±445
(0.213)

61.6±15.0
(0.244)

551±255
(0.463)

25.8±8.9
(0.343)

9.1±3.6 (0.393) This study

. Adults 2,592±306
(0.119)

68.7±16.1
(0.235)

748±296
(0.396)

28.9±10.2
(0.353)

11.0±3.9
(0.354)

. Subadults 1,896±333
(0.176)

58.0±13.8
(0.238)

468±184
(0.392)

24.5±8.0
(0.326)

8.3±3.1 (0.377)

M. angustirostris Adults 1,704±213
(0.125)

91.0±14.8
(0.163)

622±171.5
(0.276)

36.2±6.6
(0.182)

7.08±1.54
(0.218)

Deutsch et al. 1990

. Subadults 1,178 (737–
1,403)

4.55±0.83
(0.182)

Halichoerus
grypus

Pooled 235–245 36 (32–41) 17 2.1–2.3 Anderson and
Fedak 1985

. Pooled 298±29.5
(0.099)

21 41.9±17.7
(0.422)

14.3±5.8
(0.406)

2.9±0.9 (0.310) Tinker et al. 1995

Cystophora
cristata

Pooled 312.5±53
(0.170)

17.5 44 14 2.5±1.1 (0.440) Kovacs et al. 1996

Phoca vitulina Adults 108±5.6
(0.052)

29 max 26.5 max 24 0.913±0.07
(0.067)

Walker and Bowen
1993

. Subadults 76±6.6
(0.087)

0.229±0.142
(0.620)

Arctocephalus
gazella

Pooled 188±1.92
(0.010)

30.7±2.21
(0.072)

24 (4–41) 1.53±0.04
(0.026)

Boyd and Duck
1991

Values are mean±standard deviation and coefficient of variation (or range) in parentheses, if available. Depending on the study, we present, the
statistics for the full data set, or the statistics for the data set split between adults and subadults, or both
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1997; Le Boeuf et al. 2000). This could be due to the small
samples (<30 individuals even in the largest study, Le
Boeuf et al. 2000).

The cost of success

Southern elephant seals are the most striking example of
intrasexual selection (Andersson 1994) and the most
extreme case of inequality of breeding success (Galimberti
et al. 2002). Such an extreme system offers unique
opportunities for males, but this clearly comes at a cost.
Weight loss, both absolute and percentage, increased with
both the index of success in competition and the rate of
interaction with females. In northern elephant seals, a
“dominance” index was the single strongest correlate of
weight loss (Deutsch et al. 1990), explaining about 49% of
the variance in loss (52% in combination with body
weight). At SLI, the body weight and the competition
index explained together about 47% of variance in loss.
Social status is usually assumed to be related to reproduc-
tive effort, with higher-ranking males having a bigger effort
than subordinates (but see Senar et al. 2000). In elephant
seals, access to females is constrained by dominance
relationships between the males (Le Boeuf 1974; McCann
1981), although there is room for alternative tactics (Baldi
et al. 1996), and the resulting level of monopolization of
females by main breeding males is lower in the northern
species (Hoelzel et al. 1999). At SLI, a high rank in local
dominance hierarchies, and a high global success in
competition, which are costly factors in term of energetic
expenditure, are smoothly converted to fitness currency
because hierarchies are strongly linear (Galimberti et al.
2003) and harem size is moderate (Galimberti and Boitani
1999). These factors favor a strict control of the mating
system by the dominant males and a strong monopolization
of copulations (see also Modig 1996). Moreover, contrary
to most seals including the northern elephant seal, male
southern elephant seals show good skills to herd females
both by recruiting females to their harem and by stopping
them from leaving (Galimberti et al. 2000a). Herding
improves the breeding performance of harem holders but
comes at a cost, reflected in the effect of the rate of
interaction with females on weight loss. Unfortunately, a
measure comparable to our index of interaction with
females was not calculated for the northern elephant seals
study of Deutsch et al. (1990). We suspect this component
to be less important in the northern species because of the
lack of a well-developed herding behavior.
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